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A bst roc t 

We set up a simplified magnetohydrodynamic model of  the interface 

between the solar wind and the geomagnetic field on the tail side of the Earth. Using 

linearized MHD theory the stability of this situation i s  discussed. It i s  shown that 

unstable waves can exist which travel in the direction of the unperturbed field and 

grow exponentially with time. The possible acceleration of particles trapped on the 

magnetic field lines by such unstable waves i s  discussed in  a qualitative manner. 

It i s  also shown that the shortest wavelengths are the most unstable 

and that as a consequence the analysis should be repeated taking into account both 

the finite thickness of the interface and also the finite radius of gyration of the 

particles involved. 
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In recent years a great deal of attention has been paid to the geomagnetic 

tail region in order to explain geomagnetic phenomena. In particular we may mention 

a paper by Axford and Hines (1961) which concerns a unifying model of high latitude 

geophysical phenomena. 

There are two main reasons for this interest. The first i s  the need for a 

mechanism which wi l l  produce aurorae continuously. The second is  the need for a 

mechanism which wi l l  explain geomagnetic bays and various irregular electron distri- 

butions in the ionosphere. 

One particular mechanism for producing particle acceleration in the geo- 

magnetic tail has recently been proposed by Gold (1905). He assumes some form of 

coupling exists between the geomQ$netic field in  the tail region and the solar wind. 

As the solar wind flows past the field lines they experience a force which stretches 

them in the direction of solar wind flow. 

As the Earth rotates the field lines rotate and are no longer in  contact 

with the solar windgeomagnetic field boundary layer. Thus they can 'snap back' 

into their original configuration with a corresponding energy gain by particles trapped 

on the field lines. These particles can then be made to produce aurorae. 

The main difficulty in Gold's model i s  that no account i s  given of 

the origin and size of the coupling between the solar wind plasma and the geo- 

magnetic field. I t  has been conjectured that the interaction could be some sort of 

plasma or MtlRwave which corrugates the field lines and produces the required 

effect. 
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c In this paper we propose to examine the stability of the interface between 

I the solar wind and the geomagnetic field to see if such unstable waves can exist. 

We w i l l  restrict the discussion to the case where magnetohydrodynamics i s  applicable. 

In this approximation the boundary layer i s  taken to be infinitesimal in thickness. 

We are also interested only in  the case where the wavelength of a disturbance i s  

much greater than an ion or electron gyro-radius. In a later paper the equilibrium 

structure of this boundary layer wi l l  be discussed in some detail since i t  i s  possible 

that the existence of a finite thickness layer can produce a drag on the solar wind 

and a stretching of the fleld lines. 

In our simple model we straighten out the field lines as shown in Figure 

1. We assume that on one side of the interface only plasma streaming with the 

solar wind velocity occurs (region 11). We also take the direction of flow of the 

solar wind to be parallel to the interface. On the other side of the interface 

(region I )  the plasma i s  assumed to have zero streaming velocity. The plasma in 

both regions i s  assumed to be compressible. 

2. Eauations of Motion 

. 

~~~~ ~ 

In region I we let the equilibrium values of the streaming velocity, 

magnetic field and density be u, and rl respectively. In 

region II these quantities take on ihe values 

Cartesian coordinate system i s  chosen wi th  the Z-axis normal to t'?e interface 

and directed from region I to region II. 

M 

I J  . The I f  
2~ cr , eL 

The actual interface, which we choose to be the plane i s  defined by 

the unoerturbed Dressure condition 
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represents gas kinetic pressure. P where 

We now perturb this equilibrium situation by means of an infinitesimal 

disturbonce. Then the velocity, density, pressure and magnetic field on either side 

of the interface can be written 

l A =  
rw 

where the subscript ‘Oi represents equilibrium values on either side of this boundary, 

H, be 2 -vectors in  the (x,y) For the present we wi l l  let UQ and * 

plane and restrict them later to be vectors in the x-direction as depicted in  Figure 1, 

We now look for a solution to the 1inearired equations of motion 

where a l l  first order perturbation quantities which depend on x, y, L and time t 
vary as 
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Should i t  transpire than an exists with a positive r e a l  part then 

in linear theory the interface wi l l  be unstable. 

Neglecting viscosity i t  can easily be seen that the linearized equations 

of motion of the plasma can be written 

where the prime denotes differentiation with respect to 5 , i.e. 

The linearized conservation of mass equation demands that 
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The solenoidal nature of the magnetic field demands that 

Thus i t  appean as though the set of equations (3) through (10) i s  

complete. However this i s  not so since (10) can be derived from the induction 

equation. Thus we need one more equation to complete the set. In particular we 

require an equation of state which 

density changes. 

This can be included in 

I and II be characterized by sound 

wil l relate the pressure changes to the 

the above set i f  we let the plasma in regions 

speeds C respectively, L 
Then an infinitesimal disturbance yields the equation of state 

The set (3) through (1 1) i s  now complete and particular solutions to 

the equations can be found once the appropriate boundary conditions are specified, 

These wi l l  be discussed later in the paper once the general solution to the set 

has been obtained. 



. 
where for brevity we have written I:+/?; = kzb 

Elimination o f  6 7 between (5) and (1 2) leads to 

where the Alfven velocity v)o i s  given by 
& 

. 
cu v@ = $/J(4TpJ : (14) 

By making use of (3, (8), (9), (lo), (1 l ) ,  and (13) it can eventually be shown that 

i 
where 2 i s  a unit vector in the direction. 

Use of (3), (4), (3, (8), (9) and (10) shows that 
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from (16) into (15) and rearranging gives 

Making use of (17) in (13) enables a differential equation for Ur to be 

derived in the form 

. 
J 

The solution to (18) can be written as 

are to be found from hi  and n, where 
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and j = I )  z refen to equilibrium values in  regions I or I I  respectively. 

The physics of the situation demands that the disturbance field die way 

as 

boundary 

->+ since i t  i s  physically unreasonable that perturbations of the 

can influence the plasma behavior increasingly as we %= 0 

move away from this plane. 

Thus only those values of h, and YIL are permitted 

which have k (h,) b o a n d  p4 Ch2)bo . If either hl2 or 

fir i s  real but negative then we must ensure that thqdisturbance in  

the appropriate region i s  a purely progressive wave travelling away from the - 

Knowing the general solution to the equations of motion the 

dispersion relation can now be determined once the appropriate boundary conditions 

are specified. 

3. The Dispersion Relation 

. The oppropriate physical boundary conditions which must be applied 

in our case are: 

I 
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(i) the normal component of velocity i s  continuous at the interface: 
\ 

this condition leads to 

where 5 i s  the infinitesimal displacement of the interface. 

(ii) the normal component of magnetic field i s  continuous across the 

boundary. Using (i) it can easily be shown that this condition i s  automatically 

XI t i s f  ied. 

(iii) the normal stress i s  continuous across the boundary, 

Use of (1) in (19) yields 

Use of (iii) together with (21) yields a dispersion relation which, 

after a l i t t le algebra, can be put in  the form 

By inspection of (20) and (22) it i s  immediately apparent that the 

dispersion relation i s  exceedingly difficult to handle in  full generality. As a 

consequence we wi l l  consider some simp1 ifying circumstances. We assume that the 

, i s  everywhere parallel to solar wind streaming velocity, Ah U L  MI 

and both are in  the x-direction only, We further assume that the solar wind 
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occupying region II does not possess an embedded magnetic field and that the plasma 

I 

I 

I 
I .  

i n  region I does not have a streaming velocity, i.e. 

4. Applications 

u, '= 0 ah& cI( 1 = 0, * a 

Even with the above simplifications waves propagating in the (x,y) 

plane at some general angle to the magnetic field are difficult to discuss. We wi l l  

therefore restrict our attention to two fairly simple cases: (a) Transverse propagation, 

when k i s  perpendicular to HI and also to uz (b) Parallel - h 

and Ut 
*.*, * propagation, when rc A i o  parallel to both 

While these two cases are rather extreme i t  i s  felt that some general idea of the 

conditions required for instability can be obtained by their consideration. 

(a) Transverse propagation. 

In this case we can write that 

Since we also have that CAI : 0 z /-I, it  i s  a trivial matter to show that 
kc N& 

The dispersion relation can also be considerably simplified in  this case and may 

be written 
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p,= -e.. 6 

Upon squaring both sides of (25) and making use of (23) and (24) we see that 

(25) becomes 

By use of (1) and also by letting c: = 
assuming i s  the same in both regions I and 

and 

I, i t  can easily 3e seen 

from (26) that the necessary condition for unstable transverse propagating waves 

can be written 

Wp To obtain some idea of the numerical range of values allowed to 

we consider the case where 

at  the interface i s  supplied solely by the solar wind and the geomagnetic field. 

Since the temperature of the terrestrial plasma does not much exceed i o  

since satellite measurements in the tail indicate that 

8 T  PI << k: so that the pressure balance 

-4 0.. 
K and 

-23 -3 -10 gm. cm P - 
F-1 I & 2, 10- * P  L we can use the above approximation provided 

We have already neglected the interplanetary magnetic field which 

i s  of this order so that we are justified in neglecting SP, compared with HI' 
since our calculation i s  only valid for such a case. 
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Then 

and we see that (27) becomes 

i ’  

Setting y= q 3  this condition becomes 

In effect this condition says that the transvene waves can be unstable 

only if solar wind density i s  less than the terrestrial plasma density. While the 

above condition i s  necessary for instability i t  i s  by no means sufficient since in  

deriving (29) we squared (25) which introduces spurious roots. We can see from 

(23) and (24) that i f  d 2  > 0 then both MI and M L  are 

positive definite. However in  such a case we cannot satisfy (25) which i s  the 

correct dispersion relation and hence we conclude that no transverse unstable 

propagating waves can exist. 

Let us now consider the case of propagation where the wave vector i s  

parallel to the magnetic field direction. 

(b) Parallel propagation 

In this case we can write 
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Since we still impose the conditions that (Ai = 0 = H I  we have - Err 

and 

The dispersion relation can be written 

4 

Squaring both sides of (32) and making use of (30) and (31) enables us to write that 
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where we have dropped the subscript on the solar wind flow velocity. For conven- 

ience we have also set 

4 

It i s  well known that i t  i s  impossible to solve analytically polynomials 

of higher degree than a quartic. Thus in order to proceed beyond this point we 

must make a further approximation. The simplest situation to consider i s  the case 

in which the terrestrial plasma i s  taken to be completely cold. While this i s  clearly 

a gross oversimplification i t  does at least have the advantage of making the 

polynomial tractable without reducing the physics of the situation too seriously. 

c, = 0 and we then have Making this assumption we see that 

As a result equation (33) becomes 

where use has been made of (34) in  the form 
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While it i s  possible to solve (35) axdytical ly without making any further 

are algebraically so complicated 3- approximation, the final values of 

that further assumptions would have to be made at this stage about the d a t i v e  magni- 

tude of the various parameters in (35), We choose to proceed by making assumptions 

about the size of various parameters and then find the roots o f  the quartic. 

We wi l l  make the assumption that ?dr >>2. . We expect 

that 0 wi l l  indeed be much lager than unity in practice. 

We then have to decide whether the ratio of the solar wind velocity to 

i t s  sound speed i s  small or large or the tail side of the Eareh between the stand-off 

shock and the magnetopause boundary. If we assume that the shock i s  strong and 

remains so even well away from the sub-solar point ther i t  can easily be shown 

by a consideration of the Rankine-Hugoniot conditions that 

However i t  has recently been pointed out to the author (Jokl’pii, 1965) that the 

c( c:. 

shock may be fairly weak at high latitudes. Should this be the case then we have 

that the solar wind i s  virtually unaltered ip passing through a very weak shock. 

Hence we may have 

in  turn. 

u >> ca ‘We will discuss each of these cases 

Let us first consider the case \b’b Dz and (A << C, 
In this case (35) becomes 
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The roots of (37) are given approximately by 
.t. 

Of the four above roots it can be seen that only 

unstable waves. Consider first , then we have that 

X ,  x can give rise to e 

With this value of d i t  can easily be verified that 

From (39) i t  can be seen that the growth of the wave does not depend, 

in this approximation, on the solar wind velocity and i s  determined purely by the 

sound speed of the solar wind and the geomagnetic field, Likewise the phase 

velocity of the wave depends only on the fact that the solar wind i s  streaming. 
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While the above values satisfy (33) they do not satisfy (32) and hence we conclude 

that this wave does not i n  fact exist, Let us therefore consider the other possible 

as given by p4 . 'With x4 unstable wave, namely that arising from 

(38b) we have that 

. 

With this value of LJ i t  can easily be seen that 

* 

With these values of the parameters we see that (32) i s  satisfied and hence the wave 

exists agd is  unstable with a growth rate given by 

In the approximation we have made the wave's growth depend oniy on h e  iac; 

that the solar wind i s  streaming past the boundary of the magnetosphere. 

I t  can be seen that the shortest wavelengths give rise to the most unstable 

situation. However since this i s  purely a magnetohydrodynamic calculation we are 

restricted to wavelengths much greater than a boundary layer thickness or a particle's 
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I - gyro-mdius, whichever i s  the greater. So in  order to discuss the instability properly, 

we should use the collisionless Boltzmann equation and take into account both the 

I 
I particleS) gyro-radii and the thickness and structure of the boundary layer. 

Let us now consider the case where the solar wind i s  still supersonic so 
4 

that we can evaluate the roots of (35) under the approximations fr>> 2 

. 

Under these conditions we see that (35) can be written 

The roots of (46) are approximately given by 

(46) 
- a  

since to zeroth order in  C,' U cz' u-2 
to first order in 

i s  a perfect quartic. 

The point which we wish to make here i s  that, under the approximations 

made, the phase velocity of the wave i s  neariy independeni of e!! ~;arzmeten 

except for the solar wind streaming velocity. We also note that in this case no 

unstable wave exists in the l i m i t  of c( '>>e2 , 
We have shown that in  the l im i t  of (A << c, or c( )>cL 

the magnetospheric and solar wind interface i s  unstable or stable respectively to 

(47) 
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*b parallel propagating MHD waves provided rr >> 2 . The region of 

marginal stability, when c( 2 o(c~) 
results are algebraically very complicated. 

, wi l l  not be discussed since the 

Despite the fact that the calculation i s  invalid for small wavelengths 

we can see qualitatively how such unstable waves can cause particle acceleration. 

We know that the real f ield times are not complete'y straight but, in a t  leas t  one 

model of the magnetospheric tail, they close in a manner similar to that depicted 

in  figure 2. 

Let us assume that the parallel propagation instability develops 

simultaneously, or nearly so, on either side of the Earth. Then second order non- 

linear effects wi l l  stop the growth of the wave and leave 'bumps' in  the magnetic 

f ield which wi l l  propagate in the anti-solar direction. They travel along the 

field lines until appreciable bending of the field occurs when we assume the 

bumps 'slide off' the field lines. 

A particle trapped on a field line between two such bumps wi l l  be 

accelerated by them provided its pitch angle satisfies the trapping condition 

while the bumps travel to the 'slip-off' region. 

One of two things can happen to the particle: first i t  remains 

trapped until the bumps disappear and then it can travel back aiong the field 

line and mirror at a considerably lower altitude in  the Earth's atmosphere than 

the mirroring altitude before the bumps occurred; secondly, because of the gain 

in parallel momentum, the particle may be able to 'squeeze' through a bump 

and then follow the field line down to i t s  new, lower altitude, mirroring point. 
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In either case the mirroring altitude may be reduced to a height 
% 

where ionization can take place. If we have a sufficient number of particles to 

which this happens then an aurora i s  produced. 

While the above i s  only a qualitative prediction, once the equilibrium 

structure o f  the boundary layer has been discussed it should be possible to place 

this argument on a quantitative footing. 

5. AComparison 

In a recent paper by Fejer (1964) a similar MHD stability problem 

to the above i s  discussed. However the conditions he imposes on either side of 

the interface are different to those employed in  the present calculation. We 

wi l l  compare the results obtained by Fejer with those obtained here for a special 

cuse: we suppose there exist parallel magnetic fields of  equal magnitude on 

either side of the boundary between fluids of  identical acoustic properties, 

In such a case we see that the dispersion relation for parallel propagation 

I & ,  - 0 )  can be written 

where 

I 



Writing k) =- &U we see that upon squaring both sides of (48) we have 

An inspection of this equation shows that the root 

root when 

L L ~  = v becomes a double 

w-v= c-IR t - dc 

or 

which is identical to Fejer's condition (13). For instability we require I/>f(c, u) 
where f (e, u) i s  the function detettnined from (51). 

The presence of a double mot in the square of the dispersion relation 

i s  clearly seen to be the requirement for marginal stability. Thus in this case 

we see that our analysis and that of Fejer are identical. 

A second case considered by Fejer i s  that where = cL but 

the equilibrium magnetic field i s  taken to be perpendicular to the boundary and 

of equal magnitude on both sides. I t  i s  diff icult to see how such an equilibrium 
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can be maintained since the flow of plasma parallel to the interface on one side wi l l  

cause a shearing of the magnetic field which should be included in describing the 

equilibrium situation. 

% 

c 

While realizing that Fejer's calculation only aimed to show how an 

unstable situation could develop we feel that the choice of  parameters made in this 

paper probably give a better approximation to conditions in the magnetospheric tail 

near the interface than those presented by Fejer. 

6. Conclusion 

Using an extremely simplified model of the solar wind-magnetosphere 

boundary in the geomagnetic tail it h a s  been shown that unstable parallel 

propagation modes can arise when magnetohydrodynamics i s  assumed to be valid. 

The most rapidly growing mode i s  shown to be that with the shoeest wavelength. 

It i s  demonstrated qualitatively that such waves can give rise to 

particle acceleration and as a consequence may be a contributory factor in auroral 

production. . 

The main conclusion, which we wish to emphasize, i s  that both the 

above analysis and Fejer's calculations can aid only as indicatims of the correct 

situation since we are limited to wavelengths much greater than a boundary layer 

thickness and a particle's gyro-radius. 

using the Vlasov equation and taking into account the equilibrium structure of 

the boundary layer. 

-I 

I huS the aryuiiient shcu!c! he repeated 

We also wish to point out that short wavelength plasma instabilities 

are probably capable of producing the coupling between the solar wind and the 

magnetospheric boundary required in both Axford and Hines' and Gold's models. 
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0. 
Certainly the calculations based on linearized MHD equations indicate that processes 

occurring on a scale length of a boundary layer thickness or a gyro-radius are 

candidates for producing such a coupling. 

This work was supported in part by the National Aeronautics and Space 

Administration under grant NASA-NsG-96-90. 
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Figure Captions 

Figure 1. The equilibrium model. 

Figure 2. Particle acceleration mechanism. 
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